Sums of Fibonacci numbers that are perfect powers

نویسندگان

چکیده

Let us denote by Fn the n-th Fibonacci number. In this paper we show that for a fixed integer y there exists at most one exponent > 0 such Diophantine equation + Fm = ya has solution (n; m; a) in positive integers satisfying n m 0, unless 2; 3; 4; 6 or 10.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Powers That Are Sums of Consecutive Cubes

Euler noted the relation 63= 33+43+53 and asked for other instances of cubes that are sums of consecutive cubes. Similar problems have been studied by Cunningham, Catalan, Gennochi, Lucas, Pagliani, Cassels, Uchiyama, Stroeker and Zhongfeng Zhang. In particular, Stroeker determined all squares that can be written as a sum of at most 50 consecutive cubes. We generalize Stroeker’s work by determi...

متن کامل

On perfect numbers which are ratios of two Fibonacci numbers ∗

Here, we prove that there is no perfect number of the form Fmn/Fm, where Fk is the kth Fibonacci number.

متن کامل

Aliquot sums of Fibonacci numbers

Here, we investigate the Fibonacci numbers whose sum of aliquot divisors is also a Fibonacci number (the prime Fibonacci numbers have this property).

متن کامل

On powers that are sums of consecutive like powers

1 Background The problem of cubes that are sums of consecutive cubes goes back to Euler ([10] art. 249) who noted the remarkable relation 33 + 43 + 53 = 63. Similar problems were considered by several mathematicians during the nineteenth and early twentieth century as surveyed in Dickson’sHistory of the Theory of Numbers ([7] p. 582–588). These questions are still of interest today. For example...

متن کامل

On Fibonacci Numbers Which Are Powers: I I

where Fm denotes the 77?th Fibonacci number, and o > 1. Without loss of generality , we may require that t be prime. The unique solution for t 2, namely (m, c) = (12, 12)5 was given by J. H. E. Cohn [2], and by 0. Wyler [11]. The unique solution for £ = 3, namely (m9 o) = (6, 2), was given by H. London and R. Finkelstein [5] and by J. C. Lagarias and D. P. Weisser [4]. A. Petho [6] showed that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quaestiones Mathematicae

سال: 2022

ISSN: ['1727-933X', '1607-3606']

DOI: https://doi.org/10.2989/16073606.2022.2109220